ГЕОМЕТРИЧЕСКИЙ ПОДХОД К АНАЛИЗУ ТОЧНОСТИ РАЗНОСТНО – ДАЛЬНОМЕРНОГО МЕТОДА

Горицкий Ю. А.

(Россия, Москва)

В работе предлагаются удобные вычислительные процедуры анализа точности в дальней зоне разностно – дальномерного метода. Метод широко используется для локации источников излучения различной природы. Работа продиктована практической задачей анализа спутниковых радиолокационных систем, определяющих две координаты источников излучения на поверхности Земли. Оиенивается влияние на точность определения координат ошибок измерения разностей расстояний, ошибок координат приемников и неизвестной над Используется высоты излучателя уровнем моря. линеаризация и геометрические представления.

1. Введение

В работе анализируется точность в дальней зоне разностно – дальномерного метода, широко используемого в технике для локации источников излучения различной природы, [1]. Работа продиктована практической задачей анализа спутниковых радиолокационных систем, [2], определяющих две координаты источников излучения на поверхности Земли. Оценивается влияние на точность определения координат некоторых факторов, указанных ниже. Анализ проводится с линеаризации исходных соотношений, помощью [3], И геометрических представлений. Результатом являются простые и геометрически ясные формулы оценки точности и конкретные примеры.

Анализируется следующая модель: измеряемые величины - разности расстояний z_{ij}' связаны с точкой x расположения

Горицкий Ю. А.— МКО — 2005, ч. 2, стр. 512 – 513 Goritskiy Y. A.— МСЕ — 2005, vol. 2, p. 512 – 513

излучателя и точками *r*_i расположения приемников соотношениями:

$$z_{ij}' = \rho(x, r_i) - \rho(x, r_j) + \delta_{ij} \equiv f(x, r_i, r_j) + \delta_{ij},$$

 $i, j = 1, 2, ..., N, i < j$
(1)

где $\rho(x, r_i)$ – расстояние между точкой x и точкой r_i расположения *i* - го приемника, N - число приемников, δ_{ii} измерения. По ошибка совокупности измерений Z_{ii}' определяются координаты х излучателя, который находится на поверхности Земли. Оценивается влияние на точность определения поверхностных координат следующих факторов: ошибок измерения разностей расстояний, ошибок координат приемников и неизвестной высоты излучателя; оценивается также влияние ошибки линеаризации.

2. Линеаризация

Обычно диаграммы направленности приемников позволяют определить некоторую область *G* нахождения излучателя. В центре этой области зафиксируем точку x0, и будем считать неизвестной разность ($x - x_0$). В рассматриваемом случае область G находится на поверхности Земли; пусть размеры области позволяют считать ее плоской. Координаты всех точек записываем в некоторой основной декартовой системе отсчета. В точке x_0 проведем касательную плоскость Pи введем в *Р локальную* систему координат с центром в точке x₀ и единичными векторами осей g_1, g_2 , составляющими в качестве столбцов матрицу $n \times p$ (p = 2; удобно считать p произвольным) $G = [g_1, g_2];$ тогда $x \in P$ означает, что $x = x_0 + Gv$ (2)

где $y \equiv (y_1, y_2)^{T}$ – вектор – столбец координат точки *x* в локальной системе плоскости *P*, ^T – символ транспонирования.

Если $\rho(x, r)$ - расстояние от x до некоторой точки r, то $\frac{d\rho(x,r)}{d\rho(x,r)} \equiv e^{T}$ - градиент - есть единичный вектор – строка

dx

направления из r на x. Вектором градиента функции $\rho(x, r)$ по r

Раздел 6. Математические исследования и методы моделирования Part 6. Mathematical modelling researches and methods

является вектор - e^{T} направления из x на r. Вектор производных функции $\rho(x, r_i)$ по y в точке x_0 есть

$$\frac{d\rho(x,r_i)}{dx} = \frac{d\rho(x,r_i)}{dx} \bigg|_{x=x_0} \times \frac{dx}{dy} = e_i^{\mathrm{T}} \cdot G , \qquad (3)$$

где $e_i^{\mathrm{T}} \equiv grad \left. \rho(x, r_i) \right|_{x=x_0}$ единичный вектор – строка

направления на точку *x* из *r*_i.

Проведем линеаризацию (1) по x, полагая (2) и учитывая, что $||x|| \ll \rho(x, r_i)$, т.е. что диаметр область G много меньше расстояния до приемников $\rho(x, r_i)$. Полагая

$$\rho(x_0 + Gy, r_i) = \rho(x_0, r_i) + e_i^{-1} \cdot G \cdot g$$
(4)
и обозначая $z_{ij} = z_{ij}' - z_{ij}^{0}$, где $z_{ij}^{0} = [\rho(x_0, r_i) - \rho(x_0, r_j)]$, из (1)
имеем:
(5)

$$z_{ij} = (e_i - e_j)^1 G y + \delta_{ij}.$$
⁽⁵⁾

Эти соотношения являются регрессионной моделью для оценки у. Перейдем от двухиндексной нумерации (i, j), i, j = 1, ..., N, i < j, к нумерации с одним индексом q по формуле

$$q = q(i, j) = (j - 1)(j - 2)/2 + i.$$

Перенумерация (значения функции q = q(i, j), i < j) для N = 5 показана в таблице 1.

Таблица 1

i	j	1	2	3	4	5
1		•	1	2	4	7
2			•	3	5	8
3				٠	6	9
4					٠	10

Соотношения (5) запишутся в виде:

 $z_q = (\Delta e_q)^T Hy + \delta_q, q = 1, 2, ..., Q, Q = N(N-1)/2,$ обозначено $\Delta e_q \equiv e_i - e_j$. В матричном виде: $z = Ly + \delta,$ (6) где δ - вектор – столбец размерности Q, L - матрица Q×p:

 $L = \Delta E \cdot G$; строками матрицы ΔE являются векторы Δe_a^{T} ,

Горицкий Ю. А.— МКО — 2005, ч. 2, стр. 512 – 515 Goritskiy Y. A.— МСЕ — 2005, vol. 2, p. 512 – 515

G - матрица $n \times p$.

Методом наименьших квадратов получаем оценку для у:

$$\hat{y} = (L^T L)^{-1} L^T z = y + (L^T L)^{-1} L^T \delta.$$
(7)

Если ошибки имеют ковариационную матрицу D_{δ} , то применение этой оценки приведет к ошибкам с ковариационной матрицей

$$D\hat{y} = \left(L^T L\right)^{-1} L^T D_{\delta} L \left(L^T L\right)^{-1}.$$
(8)

В качестве характеристики точности используется квадратный корень из среднего квадрата ошибки по расстоянию, т.е. квадратный корень из следа матрицы:

$$\sigma_y = \sqrt{M \left\| \hat{y} - y \right\|^2} = \sqrt{Sp(D\hat{y})} .$$
(9)

3. Анализируемые источники ошибок

Общую ошибку δ представим составляющими: $\delta = \delta_{\tau} + \delta_{r} + \delta_{h}$

где δ_{τ} - ошибки измерения разности расстояний, возникающие при измерении временных сдвигов сигналов, δ_r - ошибки, обусловленные неточностью координат приемников, δ_h ошибки, обусловленные неизвестным значением высоты излучателя.

Ошибки δ_τ измерения разности расстояний считаем случайными некоррелированными с матрицей

$$D\delta_{\tau} = \sigma_{\tau}^2 \cdot I$$

 σ_{τ}^2 – дисперсия, *I* – единичная *Q*×*Q* матрица.

Ошибки δ_r , обусловленные ошибками ε_i определения координат приемников ($r_i + \varepsilon_i$) получим линеаризацией (с учетом grad $\rho(x, r_i) = e^{\mathrm{T}}$):

$$\rho(x, r_i + \varepsilon_i) = \rho(x, r_i) + \frac{d\rho(x, r_i)}{dr_i} \times \varepsilon_i = \rho(x, r_i) + e_i^T \cdot \varepsilon_i;$$

это дает в (1) составляющую $\delta_{rij} = \mathbf{e}_i^{\mathrm{T}} \cdot \boldsymbol{\varepsilon}_i - \mathbf{e}_j^{\mathrm{T}} \cdot \boldsymbol{\varepsilon}_j$.(10)

Раздел 6. Математические исследования и методы моделирования Part 6. Mathematical modelling researches and methods

Ковариационную $Q \times Q$ матрицу $D\delta_r = D_r$ ошибок $\delta_{r,q}$, q = 1, 2, ..., Q, определим, полагая ε_i для различных приемников некоррелированными с ковариационными матрицами $D_{\varepsilon i}$. Ковариацию $\delta_{r,q1}$ и $\delta_{r,q2}$, q1 = q(i, j), i < j, q2 = q(k, l), k < l, $q1 \le q2$ (т.е. $j \le l$), получим из (10): $M(\delta_{r,q1} \cdot \delta_{r,q2}) =$

$$= \mathbf{M} (e_i^{\mathrm{T}} \varepsilon_i - e_j^{\mathrm{T}} \varepsilon_j) (e_k^{\mathrm{T}} \varepsilon_k - e_i^{\mathrm{T}} \varepsilon_i) \begin{cases} e_i^{\mathrm{T}} D_{\varepsilon i} e_i + e_j^{\mathrm{T}} D_{\varepsilon j} e_j, & \text{если } i = k, j \neq l, \\ e_i^{\mathrm{T}} D_{\varepsilon i} e_i, & \text{если } i = k, j \neq l, \\ e_j^{\mathrm{T}} D_{\varepsilon j} e_j, & \text{если } i \neq k, j = l, \\ -e_j^{\mathrm{T}} D_{\varepsilon j} e_j, & \text{если } j = k, \\ 0, & \text{если } i \neq k, j \neq l, j \neq k. \end{cases}$$
(11)

Будем учитывать, что приемники движутся, и в направлении движения ошибки обычно существенно больше, чем в других направлениях. Обозначим:

 σ_{1i} – среднеквадратичную ошибку в направлении вектора скорости $V_i i$ – го приемника, σ_{2i} – среднеквадратичную ошибку во всех других направлениях. В этом случае

$$\sigma_i^2 \equiv e_i^{\mathrm{T}} \cdot D_{ei} \cdot e_i = \sigma_{1i}^2 \cos \alpha_i + \sigma_{2i}^2 \sin \alpha_i,$$

где обозначено σ_i^2 – дисперсия ошибки в направлении вектора e_i , α_i – угол между вектором e_i направления на излучатель и вектором скорости V_i :

$$\cos \alpha_i = (e_i, V_i) / \| V_i \|.$$

Пример матрицы $D\delta_r$ для N = 4 приемника приведен ниже (заполнены клетки $q_1 \le q_2$):

			$Do_r =$			
(k, l)	(1,2) 1	(1,3) 2	(1,4) 3	(2,3) 4	(2,4) 5	(3,4) 6
$(i, j) q_1 q_2$						
(1,2) 1	$\sigma_1^2 + \sigma_2^2$	σ_1^2	σ_1^2	$-\sigma_2^2$	$-\sigma_2^2$	0
(1,3) 2		$\sigma_1^2 + \sigma_3^2$	σ_1^2	σ_3^2	0	$-\sigma_3^2$
(1,4) 3			$\sigma_1^2 + \sigma_4^2$	0	$\sigma_4{}^2$	$\sigma_4{}^2$
(2,3) 4				$\sigma_2^2 + \sigma_3^2$	σ_2^2	$-\sigma_3^2$
(2,4) 5					$\sigma_{2}^{2} + \sigma_{4}^{2}$	$\sigma_4{}^2$
(3,4) 6						$\sigma_3^2 + \sigma_4^2$
п	<u> </u>	(~			

Для N = 3 (здесь удобна следующая нумерация:

Горицкий Ю. А.— МКО — 2005, ч. 2, стр. 512 – 517 Goritskiy Y. A.— МСЕ — 2005, vol. 2, p. 512 – 517

$\Delta e_1 \equiv e_1 - e_2, \ \Delta e_1$	$e_2 \equiv e_2 - e_2$	$e_3, \Delta e_3 \equiv$	ез - е1) д	исперсионная
матрица: <i>D</i> δ _r =	$\begin{bmatrix} \sigma_1^2 + \sigma_2^2 \\ - \sigma_2^2 \\ - \sigma_1^2 \end{bmatrix}$	$\begin{array}{c} -\sigma_2^2\\ \sigma_2^2+\sigma_3^2\\ -\sigma_3^2\end{array}$	$-\sigma_1^2$ $-\sigma_3^2$ $\sigma_3^2 + \sigma_1^2$	

Ошибки δ_h , обусловленные незнанием высоты. Пусть излучатель находится на высоте $h \neq 0$, т.е.

$$x = x_0 + Gy + g_3h,$$

где g_3 – единичный вектор координатной оси, наравленной по вертикали в точке x_0 . Приращение g_3h является ощибкой $\delta_{h,ij} = (e_i - e_j)^T g_3h$ для z_{ij} в (5):

$$z_{ij} = (e_i - e_j)^{\mathrm{T}} G y + \delta_{h,ij};$$
(12)

в матричном виде $\delta_h = \Delta E g_3 h$. Соответствующая ошибка в координатах по (7):

$$\Delta y = (L^T L)^{-1} L^T \Delta E h_3 b. \tag{13}$$

Пример расчета модуля этого вектора приведен на рис. 3. Ошибка, возникающая из- за приближения куска сферы области *G* плоскостью, сводится к ошибке по высоте и легко оценивается по(13).

4. Оценка влияния ошибки линеаризации

Функция $f(x_0 + Gy, r_i, r_j)$ из (1) заменена в (4) линейным приближением. Оценим влияние квадратичной части на результат. Приращение Δf по y:

$$\Delta f_q \approx \left. \frac{df_q}{dy} \right|_{(0,0)} \cdot y + s_q(y), \, s_q(y) = \left. y \right|^{\mathrm{T}} A_q \left. y \right|,$$

Величина $s_q(y)$ есть квадратичная составляющая зависимости f от y, $A_q - p \times p$ матрица вторых производных f по y. В матричном в виде (1):

z = L y + s(y).

Умножая (2) на $(L^{T}L)^{-1}L^{T}$, получим ошибку нелинейности $\Delta y = \hat{y} - y = (L^{T}L)^{-1}L^{T}s(y) = C \cdot s(y),$ (14)

где $C = (L^T L)^{-1} L^T = [c_{ij}] - p \times Q$ матрица. Компонента вектора Δy :

Раздел 6. Математические исследования и методы моделирования Part 6. Mathematical modelling researches and methods

$$\Delta y_i = y^{\mathrm{T}} B_i y, i = 1, ..., p, B_i = \sum_{j=1}^{Q} c_{ij} A_j.$$

Оценка сверху для $|\Delta y|$:

$$\left\|\Delta y\right\| = \sqrt{\sum_{i=1}^{p} (y^{\mathrm{T}} B_{i} y)^{2}} \le \left\|y\right\|^{2} \sqrt{\sum_{i=1}^{p} \lambda_{\max}^{2}(B_{i})}, \qquad (15)$$

где λ_{\max} — максимальное по модулю собственное значение матрицы B_i . Потребуем ограничение $\|\Delta y\|$ заданной величиной Δ^* ,

$$\left\|\Delta y\right\| \le \Delta^*;\tag{16}$$

очевидно, это требование обеспечивается выполнением условия:

$$\|y\| \le \sqrt{\Delta^* / \sqrt{\sum_{i=1}^p \lambda_{\max}^2(B_i)}} \equiv \|y\|^*,$$
 (17)

 $\|y\|^*$ - радиус области локальной линейности. Если $d(G)/2 \le \|y\|^*,$ (18)

d(G) – диаметр области *G*, то (16) выполняется, поскольку априорно $\|y\| \le d(G)/2$. Если (18) не выполняется, и для оценки \hat{y} , $\|\hat{y}\| > \|y\|^*$,

то необходимо перенести центр локальной системы в точку \hat{y} и провести вы числение \hat{y} заново. По существу, описан итерационный процесс метода Ньютона. На рис.1 показаны результаты расчетов $\|y\|^*$ - радиуса области локальной линейности, как функции от широты φ и долготы λ для условного значения $\Delta^* = 600$ м и для принятого расположения трех спутников. Видно, в каких областях поверхности Земли ошибка нелинейности достаточно мала ($\|y\|^*$ велико) для того, чтобы Горицкий Ю. А.— МКО — 2005, ч. 2, стр. 512 – 519 Goritskiy Y. A.— МСЕ — 2005, vol. 2, p. 512 – 519

удовлетвориться первым приближением.

5. Примеры расчетов

На рис.1-3 обозначено λ, φ - долгота и широта расположения центра x_0 осматриваемой области *G*. Два геостационарных спутника находятся на высоте 36 тыс. км над Землёй, долгота ± 5.5°. Третий спутник условно находится на высоте 40 тыс. км с долготой $\lambda = 0$ и широтой φ =63.4°. Треугольниками обозначены географические координаты спутников.

а. Влияние ошибок координат спутников. На рис.2 приведены результаты расчета ошибки координат излучателя, при фиксированных с.к.о. ошибок координат спутников; принято $\sigma_1 = \sigma_2 = 0.1 \sigma$ для для стационарных третьего $\sigma_3 = \sigma$. Изображены уровня, соответствующие линии единицах фиксированному значению ошибки в σ . Минимальное значение ошибки 0.9σ при $\lambda = 0, \phi \approx 30^{\circ}$

Раздел 6. Математические исследования и методы моделирования Part 6. Mathematical modelling researches and methods

Рис.2

б Влияние ошибки δ_{τ} -измерения разности расстояний. Результаты расчетов дают ошибку не выше $6\sigma_{\tau}$ в области, ограниченной по широте $30 \pm 45^{\circ}$ и по долготе $\pm 45^{\circ}$.

в. Влияние ошибки по высоте. Показан максимальный модуль ошибки за счёт ошибки $h = \pm 5$ км по высоте излучающего объекта. На рис.3 показаны линии уровня, соответствующие фиксированному значению ошибки в км. Минимальное значение 43м.

6. Заключение

Получены геометрические соотношения, оценивающие точность определения поверхностных координат излучателя разностно - дальномерным методом. Оценено влияние ошибок измерения разностей расстояний, ошибок координат приемников и высоты излучателя. Приведены примеры расчетов для спутниковой системы.

Список литературы:

- 1. В.С.Черняк. Многопозиционная радиолокация. М.: Радио и связь, 1993.
- 2. Сетевые спутниковые радионавигационные системы / Под ред. П.П. Дмитриева, В.С.Шебшаевича. М.: Радио и связь, 1992.

Горицкий Ю. А.— МКО — 2005, ч. 2, стр. 512 – 521 Goritskiy Y. A.— МСЕ — 2005, vol. 2, p. 512 – 521

3. С. Р. Рао. Линейные статистические методы и их применения. М.: Наука, 1968

GEOMETRICAL APPROACH TO RANGE-DIFFERENCE METHOD ACCURACY ANALYSIS

Goritskiy Y. A.

(Russia, Moscow)

In this paper convenient calculation procedures of accuracy analysis in distant area of range-difference method are offered. This method is wide used for different kinds of radiation sources location. This work is caused by practical problem of satellite radar systems determining two coordinates of radiation sources on Earth surface analysis. The influence on coordinates determination by distance difference measurement errors, receiver coordinates errors and unknown radiator altitude is estimating. Linearization and geometrical conceptions are used.