ON THE ERROR ESTIMATE OF APPROXIMATION OF FUNCTIONS OF BOUNDED VARIATION BY SZASZ-MIRAKYAN OPERATORS

Singh S. N.

SKM University, Dumka at Jamtara College, Jamtara, Jharkhand-815351 (India).

The Szasz-Mirakyan operators play an important role in the theory of approximation. They have been studied intensively in connection with different branches of analysis. The Szasz-Mirakyan operator is defined as

$$S_n(f, x) = \sum_{k=0}^{\infty} f(k/n) p_k(nx), \text{ where }$$

$$p_k(nx) = e^{-nx}(nx)^k/k!, \qquad n \in \mathbb{N}, x \in \mathbb{R}_0.$$

The Szasz-Mirakyan operators S_n are defined in terms of a sample of given function f on the points k/n, for $k \in N_0$, $n \in N$. Many research papers [3, 4, 5] appear with certain modifications in this operator $S_n(f, x)$.

Grof [1] proved that if f be continuous on $[0, \infty)$ and $f(x) = O(e^{\alpha x})$, for some $\alpha > 0$, as $x \to \infty$ then for all A > 0 and $x \in [0, A]$

$$S_n(f, x) - f(x) = O(\omega_{2A}(f, n^{-1/2})),$$

 $\omega_{A}(f, \delta) = \sup \{ |f(x+t) - f(x)| : |t| \le \delta \}.$

This result was further improved by Hermann. He proved that the above result holds if $f(t)=O(t^{\alpha t}), \alpha > 0$. Cheng [1] estimated the rate of convergence of $S_n(f, x)$. He proved that if f be continuous function of bounded variation on every finite subinterval of $[0, \infty)$ and $f(t) = O(t^{\alpha t})$ for some $\alpha > 0$ as $t \to \infty$, then if $x \in (0, \infty)$ is irrational, then for n sufficiently large,

where $V_a(g)$ is the total variation of g on [a, b], and $g_x(t) = f(t)-f(x+0)$, $x < t < \infty$; = 0 if t = x; = f(t)-f(x-0) if $0 \le t < x$. We shall also consider the continuous functions of bounded variation defined on $[0, \infty)$ and find the error estimate of approximation by Szasz-Mirakyan operators maintaining its original form with a different approach, also a better estimate of approximation has been obtained in this paper.

References:

b

1. Grof, J., A Szasz Otto-fele operator approximacics tulajdonsagairol Mat. III, Oszt. Kozl. 20(1971), 35-44. [Hungarian].

2. Cheng, F., On the rate of convergence of the Szasz-Mirakyan operator for functions of bounded variation, J. Approximation Theory 40 (1984), 226-241.

3. Lehnhoff, H. G., On a modified Szasz-Mirakyan operator, J. Approximation Theory, 42(1984), 278-282.

4. Herzog, M., Approximation theorems for modified Szasz-Mirakyan operators in polynomial weight spaces, Matematiche (Catania), 54 (1999), no. 1 (2000), 77-90.

5. Walezak, Z., On the rate of convergence for some linear operators, Hiroshima Math J. 35(2005),115-124.