EXISTING OF PERIODIC AND BOUNDED SOLUTIONS OF QUASILINEAR EQUATIONS SECOND ORDER

Ahmedov J.T., Kobilzoda M.M.

Tajik National University, Tajikistan, 734025, Dushanbe, st. Muhamadiev 10, Phone: (+992)985655090, E-mail: jovidon-a.90@mail.ru

In this article considered periodic and bounded solutions of differential equation

$$y'' + ay' + by + c|y' + d \cdot y| + f(t, y, y') = 0,$$
(1)

where a, b, c, d – real numbers, the function f(t, y, y') satisfies condition $\lim_{r\to\infty} \frac{1}{r} \sup_{t,|y|+|y'| \le r} |f(t, y, y')| = 0.$

In the (a, b) plane, we define the sets

$$I(c,d) = \{(a,b): ad > 0, 2ab = d(c^{2} + a^{2})\},\$$
$$\Delta(c,d) = \{(a,b): -c \le a \le c, 4c | d | \le 4b \le a^{2} + c^{2} - 2c | 2d - a |\}.$$

Theorem 1. Let $d \neq 0$, $|b| - c|d| \neq 0$ and the coefficients a, b satisfy conditions: either $a/d \notin (0, 2)$, either 0 < a/d < 2 and

$$\left(2ab-d(c^2+a^2), \frac{c^2-a^2}{c}\sqrt{\frac{2d}{a}-1}\right) \neq \left(0, \frac{4k\pi}{T}\right), \ k = 1, 2, \dots$$

Let function f(t, y, z) is T – periodic. Then equation (1) has at least one T-periodic solution.

Theorem 2. Let $d \neq 0$ and the coefficients a, b satisfy conditions |b| - c|d| > 0 and $(a, b) \notin I(c, d) \cup \Delta(c, d)$. Then equation (1) has at least one solution that is bounded on the whole axis.

Literature

1. Ahmedov J. T., Mirzoev S. H., Nurov I. J. Analysis of periodic solutions of non-smooth dynamical systems with forced oscillations // Proceedings of TNU. issue 1-3, 2016. P. 14-17.