СВЯЗЬ ПОНЯТИЙ ОТБОРА В СИСТЕМАХ ДИФФЕРЕНЦИАЛЬНЫХ И РАЗНОСТНЫХ УРАВНЕНИЙ НА КОНЕЧНОМЕРНОМ СТАНДАРТНОМ СИМПЛЕКСЕ

Кузенков О.А., Капитанов Д.В.

Нижегородский государственный университет им. Н.И. Лобачевского, ф-т Вычислительной Математики и Кибернетики, кафедра численного и функционального анализа Россия, 603022, г. Нижний Новгород, Пр. Гагарина 23, УК 2, ф-т ВМиК Тел: (831)462-33-63? E-mail: kapitanov.dmitry@cs.vmk.unn.ru

Рассмотрим задачу Коши для системы из n обыкновенных дифференциальных уравнений:

$$\dot{x}_i = F_i(x), \ i = \overline{1, n},\tag{1}$$

при выполнении условий

$$x_i(t_0) = x_i^0 \ge 0, \sum_{i=1}^n x_i(t) = 1.$$
 (2)

Рассмотрим систему из n разностных уравнений

$$\Delta x_i = F_i(x) \Delta t, \ i = \overline{1, n}. \tag{3}$$

при выполнении условий (2).

Определение. Систему (1),(2) будем называть системой отбора, если найдется такой номер i, что независимо от начальных условий $x_i(0) \neq 0$, выполняются условия:

$$x_i(t) \underset{t \to \infty}{\rightarrow} 1; \ x_j(t) \underset{t \to \infty}{\rightarrow} 0; \ i \neq j.$$

Определение отбора для системы разностных уравнений (3), при условии (2) вводится аналогично.

Теорема 1. Рассмотрим систему (1) на симплексе (2). Пусть функция $F_1(x)$, стоящая в правой части первого уравнения системы (1) является непрерывно дифференцируемой на симплексе (2) по переменной x. Пусть точка $x^* = (1,0,...,0)$ является глобально асимптотически устойчивым состоянием равновесия системы (1) на симплексе (2). Рассмотрим систему (3) разностных уравнений на стандартном симплексе (2). Если для всех собственных чисел матрицы P системы (3), линеаризованной в окрестности точки x^* , справедливы неравенства $-2 < \lambda_i < 0$, $i = \overline{1,n}$, то найдется такое число $\delta > 0$, что для любого $\Delta t < \delta$ система (3) на симплексе (2) будет системой отбора.

Теорема 2. Рассмотрим систему разностных уравнений (3) на стандартном симплексе (2). Если последовательность $x_1(t_0 + n\Delta t)$ стремится (при n стремящемся $\kappa \infty$) κ единице равномерно по Δt , то система дифференциальных уравнений (1) на симплексе (2) будет системой отбора.