|
Conference publicationsAbstractsXVI conferenceФормирование оптимального инвестиционного портфеля на основе моделей MGARCHRussia, 634050, Tomsk, Lenin avenue, 30 1 pp. (accepted)Центральной проблемой теории портфеля является выбор оптимальной комбинации рисковых активов, позволяющей достичь требуемого уровня доходности при наименьшем (заданном) уровне дисперсии или наименьшей дисперсии доходности при заданном уровне риска. Одним из наиболее распространенных подходов является алгоритм Марковица, основанный на анализе соотношения среднего и дисперсии [1]. При этом взаимосвязь между ними может быть описана моделью оценки стоимости финансовых активов (САРМ) [2]. Однако, в основе обеих методик лежит предположение о постоянстве корреляционной матрицы, что не находит подтверждения при работе с эмпирическими данными. В настоящей работе предложены модификации алгоритмов Марковица и Тобина [3] формирования оптимального портфеля и модели САРМ, учитывающие степень коррелированности и динамику коэффициентов чувствительности к риску. В основе модификации лежит ранее предложенная авторами обобщенная многомерная модель авторегрессии условной гетероскедастичности, позволяющая осуществлять переход от стационарной матрицы корреляций к динамической [4]. Предложен алгоритм формирования оптимального портфеля с учетом ограничений на максимально допустимый уровень риска. В качестве меры риска выбран показатель Value-at-risk (VaR).
Литература 1.Markowitz,H., Portfolio selection: efficient distribution of investments, New York, John Wiley, 1959. 2.Sharpe, W.F., Capital asset prices: a theory of market equilibrium under conditions of risk, Journal of finance, 19, no. 3, 1964, pp. 425-442. 3.Tobin J., The theory of portfolio selection, The theory of interest rates, ed. F.H.Hahn and F.P.R. Brechling, London: Macmillan and Co, 1965. 4.Бельснер О.А., Крицкий О.Л. Информационная матрица Фишера для многомерного метода DCC-MGARCH(1,1)//Математика. Компьютер. Образование: Тезисы докладов 15-й Международной конференции. Москва: Ижевск: Регулярная и хаотическая динамика, 2008. - c. 236 |