Loading [MathJax]/jax/output/HTML-CSS/jax.js
English

Архив публикаций

Тезисы

XVIII-ая конференция

Влияние дрейфа на двумерную динамику реакционно − диффузионной системы с нелокальным взаимодействием

Борисов А.В., Трифонов А.Ю.1, Шаповалов А.В.

Томский государственный университет, Россия, 634050, Томск, пр. Ленина 36, borisov@phys.tsu.ru, shpv@phys.tsu.ru

1Томский политехнический университет, Россия, 634034, Томск, пр. Ленина 30, trifonov@tpu.ru

1  стр. (принято к публикации)

!Просмотр формул возможен только при работающем JavaScript. Пожалуйста, включите поддержку JavaScript в настройках вашего браузера.

Рассмотрено влияние дрейфа (конвективного потока) на двумерную динамику реакционно-диффузионной системы, описываемой обобщенным уравнением Фишера - Колмогорова - Петровского - Пискунова (ФКПП) с нелокальным взаимодействием

\partial u(x,y,t)/ \partial t = D( \partial 2/ \partial x2 + \partial2/\partial y2)u(x,y,t) + a u (x,y,t) + $

+[\partial/\partial x Vx(x,y) + \partial/\partial y Vy(x,y)]u(x,y,t) - ku(x,y,t)\int b(x,y,x1,y1) u(x1,y1,t)dx1 dy1.$

Здесь u\left( {x,y,t} \right) - кинетическая переменная, D - коэффициент диффузии, b( x,y,x1 ,y1 ) - функция влияния, k - параметр нелинейности, параметр \,a\, > 0 - темп роста величины u\left({x,y,t} \right). Функции Vx \left( {x,y} \right), Vy \left( {x,y} \right) описывают дрейф.

Уравнение ФКПП применяется в моделях динамики роста колоний микроорганизмов, в которых u\left( {x,y,t} \right) представляет собой популяционную плотность бактерий, дрейф может описывать популяционную синхронизацию, возникающую за счет внутренней способности бактерий к коллективному движению (хемотаксису) при внесении, или выделении бактериями аттрактанта/репеллента (что влияет на направление дрейфа), а также популяционную дисперсию, возникающую в протоке субстрата через область, занимаемую популяцией.

Численными методами показано, что локализованное начальное распределение со временем преобразуется в кольцеобразную структуру, причем, при специальном выборе дрейфа расширение кольца ограничено. На кольце формируется множество локальных максимумов плотности u, амплитуды которых асимптотически по времени стремятся к постоянному значению, а число максимумов на кольце зависит от соотношения между параметрами нелинейности и дрейфа. Исследованы виды образующихся структур при различных значениях параметров нелинейности и дрейфа.

Работа выполнена при частичной финансовой поддержке АВЦП Министерства образования и науки РФ № 2.1.1/3436; ФЦП "Научные и научно-педагогические кадры инновационной России", контракты № 02.740.11.0238; П691; П789.



© 2004 Дизайн Лицея Информационных технологий №1533